[go: up one dir, main page]

login
A174244
Least of 4 consecutive integers such that their product +-5 are primes.
2
1, 11, 31, 61, 116, 131, 321, 336, 906, 1081, 1101, 1216, 1601, 1821, 2081, 2106, 2356, 2491, 3051, 3101, 3281, 3286, 3496, 3736, 4576, 4716, 4861, 4876, 4886, 4981, 5066, 5096, 5301, 5881, 6066, 6121, 6401, 6761, 6916, 7061, 7446, 7556, 8021, 8041, 8056
OFFSET
1,2
COMMENTS
1*2*3*4=24+-5 -> primes,..
LINKS
MATHEMATICA
f1[n_]:=PrimeQ[n-5]&&PrimeQ[n+5]; f2[n_]:=n*(n+1)*(n+2)*(n+3); lst={}; Do[If[f1[f2[n]], AppendTo[lst, n]], {n, 8!}]; lst
Select[Partition[Range[8200], 4, 1], AllTrue[Times@@#+{5, -5}, PrimeQ]&][[All, 1]] (* or *) Select[ Range[ 8200], AllTrue[6#+11#^2+6#^3+#^4+{5, -5}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 20 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved