[go: up one dir, main page]

login
A173671
Positive integers that cannot be expressed as 3^m-2^n where m and n are integers.
4
3, 4, 6, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
OFFSET
1,1
COMMENTS
The complement of this set, i.e., integers of the form 3^m-2^n, is A192111. - M. F. Hasler, Nov 24 2010
LINKS
H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), Difference of prime powers, Problem 1404, Math. Mag., 65 (No. 4, 1992), 265; Solution, Math. Mag., 66 (No. 4, 1993), 269.
Math Overflow, 3^n - 2^m = +-41 is not possible. How to prove it?, Several contributors, Jun 29 2010.
KEYWORD
nonn
AUTHOR
Max Alekseyev, Nov 24 2010
EXTENSIONS
Deleted unwarranted programs and b-file. - N. J. A. Sloane, Oct 21 2019
STATUS
approved