[go: up one dir, main page]

login
A173052
Partial sums of A072857.
0
1, 3, 16, 53, 160, 273, 410, 1423, 2460, 3539, 4776, 6143, 7522, 17601, 27724, 37860, 47999, 58236, 68515, 78882, 89261, 101640, 115319, 215598, 315977, 417214, 519561, 621940, 725619, 849098, 1850335, 2852682, 3855061, 4858740, 5871089
OFFSET
1,2
COMMENTS
Partial sums of primeval numbers. Primeval number: a prime which "contains" more primes in it than any preceding number. Here "contains" means may be constructed from a subset of its digits. E.g., 1379 contains 3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173 and 9371. The subsequence of prime partial sums of primeval numbers begins: 3, 53, 1423, 3539, 6143, 89261, 115319, 315977. What is the smallest primeval prime partial sums of primeval numbers, i.e. the intersection of this sequence with A119535?
LINKS
Chris K. Caldwell AND G. L. Honaker, Jr., A BRIEF PRIME CURIOS! GLOSSARY.
FORMULA
a(n) = SUM[i=1..n] A072857(i) = SUM[i=1..n] {numbers that set a record for the number of distinct primes that can be obtained by permuting some subset of their digits}.
EXAMPLE
a(36) = 1 + 2 + 13 + 37 + 107 + 113 + 137 + 1013 + 1037 + 1079 + 1237 + 1367 + 1379 + 10079 + 10123 + 10136 + 10139 + 10237 + 10279 + 10367 + 10379 + 12379 + 13679 + 100279 + 100379 + 101237 + 102347 + 102379 + 103679 + 123479 + 1001237 + 1002347 + 1002379 + 1003679 + 1012349 + 1012379.
CROSSREFS
Cf. A000040, A072857, A039993, A075053, A076497, A076449, A119535 (prime subsequence).
Sequence in context: A041233 A055194 A190730 * A027540 A099851 A005550
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 08 2010
STATUS
approved