[go: up one dir, main page]

login
A172970
Triangle T(n, k) = A172452(n) - A172452(k) - A172452(n-k), read by rows.
1
-1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 2, 1, -1, -1, 7, 9, 9, 7, -1, -1, 35, 43, 44, 43, 35, -1, -1, 143, 179, 186, 186, 179, 143, -1, -1, 575, 719, 754, 760, 754, 719, 575, -1, -1, 3071, 3647, 3790, 3824, 3824, 3790, 3647, 3071, -1, -1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1
OFFSET
0,13
COMMENTS
Row sums are: {-1, -2, -3, -2, 2, 30, 198, 1014, 4854, 28662, 197622, ...}.
FORMULA
T(n, k) = A172452(n) - A172452(k) - A172452(n-k).
T(n, k) = c(n) - c(k) - c(n-k) where c(n) = Product_{j=1..n} A004001(j).
EXAMPLE
Triangle begins as:
-1;
-1, -1;
-1, -1, -1;
-1, 0, 0, -1;
-1, 1, 2, 1, -1;
-1, 7, 9, 9, 7, -1;
-1, 35, 43, 44, 43, 35, -1;
-1, 143, 179, 186, 186, 179, 143, -1;
-1, 575, 719, 754, 760, 754, 719, 575, -1;
-1, 3071, 3647, 3790, 3824, 3824, 3790, 3647, 3071, -1;
-1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1;
MATHEMATICA
f[n_]:= f[n]= If[n<3, Fibonacci[n], f[f[n-1]] + f[n-f[n-1]]]; (* f=A004001 *)
c[n_]:= Product[f[j], {j, n}]; (* c=A172452 *)
T[n_, k_]:= c[n] - c[k] - c[n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
PROG
(Sage)
@CachedFunction
def b(n): return fibonacci(n) if (n<3) else b(b(n-1)) + b(n-b(n-1)) # b=A004001
def c(n): return product(b(j) for j in (1..n)) # c=A172452
def T(n, k): return c(n) - c(k) - c(n-k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 27 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 06 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 27 2021
STATUS
approved