[go: up one dir, main page]

login
A172223
Number of ways to place 5 nonattacking zebras on a 5 X n board.
2
1, 252, 1925, 6534, 20502, 57710, 142312, 308254, 606051, 1105332, 1897899, 3100250, 4857000, 7344010, 10771530, 15387310, 21479725, 29380900, 39469835, 52175530, 67980110, 87421950, 111098800, 139670910, 173864155
OFFSET
1,2
COMMENTS
Zebra is a (fairy chess) leaper [2,3].
LINKS
FORMULA
a(n) = 5*(125n^5-1250n^4+7575n^3-28426n^2+64000n-67056)/24, n>=12.
G.f.: x * (14*x^16 -32*x^15 +14*x^14 -292*x^13 +898*x^12 -536*x^11 +514*x^10 -4232*x^9 +7258*x^8 -3296*x^7 +266*x^6 -2018*x^5 +5148*x^4 -1256*x^3 +428*x^2 +246*x +1) / (x-1)^6. - Vaclav Kotesovec, Mar 25 2010
MATHEMATICA
CoefficientList[Series[(14 x^16 - 32 x^15 + 14 x^14 - 292 x^13 + 898 x^12 - 536 x^11 + 514 x^10 - 4232 x^9 + 7258 x^8 - 3296 x^7 + 266 x^6 - 2018 x^5 + 5148 x^4 - 1256 x^3 + 428 x^2 + 246 x+1) / (x - 1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
STATUS
approved