[go: up one dir, main page]

login
A171683
Triangle T(n,k) which contains 4*n!*2^floor((n+1)/2) times the coefficient [t^n x^k] exp(t*x)/(3 + exp(2*t)) in row n, column k.
1
1, -1, 2, -1, -2, 2, 1, -6, -6, 4, 10, 4, -12, -8, 4, 26, 100, 20, -40, -20, 8, -154, 156, 300, 40, -60, -24, 8, -1646, -2156, 1092, 1400, 140, -168, -56, 16, 1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16, 92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32
OFFSET
0,3
COMMENTS
The bivariate Taylor expansion of exp(t*x)/(3+exp(2*t)) is 1/4 + (x/4-1/8)*t +(-1/16+x^2/8-x/8)*t^2+...
Row n contains the coefficients of [x^k] of the polynomial in front of t^n, multiplied by 4*floor((n+1)/2)*n!.
Row sums are: 1, 1, -1, -7, -2, 94, 266, -1378, -15128, -36344, 839144,...
EXAMPLE
The triangle starts in row n=0, columns 0<=k <=n as
1;
-1, 2;
-1, -2, 2;
1, -6, -6, 4;
10, 4, -12, -8, 4;
26, 100, 20, -40, -20, 8;
-154, 156, 300, 40, -60, -24, 8;
-1646, -2156, 1092, 1400, 140, -168, -56, 16;
1000, -13168, -8624, 2912, 2800, 224, -224, -64, 16;
92744, 18000, -118512, -51744, 13104, 10080, 672, -576, -144, 32;
...
MATHEMATICA
Clear[p, g, m, a];
m = 1;
p[t_] = 2^(m + 1)*Exp[t*x]/(-1 + 2^(m + 1) + Exp[2^m*t]) Table[ FullSimplify[ExpandAll[2^ Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], {n, 0, 10}]
a = Table[CoefficientList[FullSimplify[ExpandAll[2^Floor[(n + 1)/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]
Flatten[a]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Dec 15 2009
EXTENSIONS
Number of variables in use reduced from 4 to 2, keyword:tabl added - The Assoc. Eds. of the OEIS, Oct 20 2010
STATUS
approved