[go: up one dir, main page]

login
A171400
Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A007918(n), the least prime not less than n.
5
1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 1, 0, 2, 1, 2, 2, 1, 0, 3, 3, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, 1, 1, 0, 1, 0, 5, 4, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 3, 3, 1, 0, 4, 4, 4, 4, 5, 5, 1, 0, 2, 2, 1, 0, 1, 0, 2
OFFSET
0,9
COMMENTS
Delete steps are not necessary;
a(n) = 0 iff n is prime: a(A000040(n))=0;
a(A171401(n)) = 1;
A171402 gives smallest numbers m such that a(m)=n: a(A171402(n))=n.
LINKS
Michael Gilleland, Levenshtein Distance
FORMULA
a(n) = BinaryLevenshteinDistance(n, A007918(n)).
EXAMPLE
n=14, A007918(14)=17: 14==1110->1100->1100->10001==17, 2 subst and 1 ins: a(14)=3;
n=15, A007918(15)=17: 15==1111->1011->1001->10001==17, 2 subst and 1 ins: a(15)=3;
n=16, A007918(16)=17: 16==10000->10001==17, 1 subst: a(16)=1, A171401(8)=16;
n=17, A007918(17)=17: no editing step: a(17)=0;
n=18, A007918(18)=19: 18==10010->10011==19, 1 subst: a(18)=1, A171401(9)=18.
CROSSREFS
Sequence in context: A204459 A035155 A090584 * A271592 A357187 A128409
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Dec 08 2009
STATUS
approved