%I #12 Sep 08 2022 08:45:49
%S 0,1,16640,7184295,537001984,15259765625,235097531136,2373800931775,
%T 17592253153280,102945759757569,500000500000000,2088625263681671,
%U 7703513367183360,25592951809295065,77784058109429504
%N a(n) = n^9*(n^6 + 1)/2.
%H Vincenzo Librandi, <a href="/A170788/b170788.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16,-120,560,-1820,4368,-8008, 11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
%F G.f.: (x + 16624*x^2 + 6918175*x^3 + 424049504*x^4 + 7520532701*x^5 + 51388594448*x^6 + 155693938947*x^7 + 223769083200*x^8 + 155693938947*x^9 + 51388594448*x^10 + 7520532701*x^11 + 424049504*x^12 + 6918175*x^13 + 16624*x^14 + x^15)/(1-x)^16. - _G. C. Greubel_, Dec 06 2017
%F a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16). - _Wesley Ivan Hurt_, Jul 29 2022
%t Table[n^9*(n^6+1)/2, {n, 0, 30}] (* _G. C. Greubel_, Dec 06 2017 *)
%o (Magma) [n^9*(n^6+1)/2: n in [0..20]]; // _Vincenzo Librandi_, Aug 26 2011
%o (PARI) for(n=0,30, print1(n^9*(n^6+1)/2, ", ")) \\ _G. C. Greubel_, Dec 06 2017
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Dec 11 2009