OFFSET
0,3
COMMENTS
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, 1984; see Entry 27, pp. 170-171. This is the square root of the right side of (27.1), divided by 2.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: ( phi(q^7) * phi(q^9) + phi(-q^7) * phi(-q^9) + 4 * q^4 * psi(q^14) * psi(q^18) ) / 2 in powers of q^2 where phi(), psi() are Ramanujan theta functions. - Michael Somos, May 24 2018
EXAMPLE
G.f. = 1 + 2*x^2 + 4*x^8 + 2*x^9 + 2*x^11 + 2*x^14 + 4*x^18 + 2*x^23 + ...
G.f. = 1 + 2*q^4 + 4*q^16 + 2*q^18 + 2*q^22 + 2*q^28 + 4*q^36 + 2*q^46 + 2*q^58 + ...
MATHEMATICA
QP = QPochhammer; p[q_] := EllipticTheta[3, 0, q]; u[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, Sqrt[q]]; a[n_] := SeriesCoefficient[(1/2)*(p[q]*p[q^63] + p[-q]*p[-q^63] + 4*q^16*u[q^2]*u[q^(126)]), {q, 0, n}]; Table[a[n], {n, 0, 100}][[ ;; ;; 2]] (* G. C. Greubel, Dec 05 2017 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^7] EllipticTheta[ 3, 0, q^9] + 1/2 EllipticTheta[ 2, 0, q^7] EllipticTheta[ 2, 0, q^9], {q, 0, 2 n}, Assumptions -> q>0]; (* Michael Somos, May 24 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 10 2009
STATUS
approved