[go: up one dir, main page]

login
A169809
Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane that have reflection symmetry, n >= 0, k >= 0.
10
1, 1, 1, 1, 2, 1, 2, 3, 4, 3, 2, 6, 7, 10, 8, 5, 8, 18, 19, 29, 23, 5, 18, 26, 52, 57, 86, 68, 14, 23, 68, 82, 166, 176, 266, 215, 14, 56, 91, 220, 270, 524, 557, 844, 680, 42, 70, 248, 321, 769, 890, 1722, 1806, 2742, 2226, 42, 180, 318, 872, 1151, 2568, 2986, 5664, 5954, 9032, 7327
OFFSET
0,5
COMMENTS
"A closed bounded region in the plane divided into triangular regions with k+3 vertices on the boundary and n internal vertices is said to be a triangular map of type [n,k]." It is a [n,k]-triangulation if there are no multiple edges.
"... may be evaluated from the results given by Brown."
REFERENCES
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
LINKS
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
EXAMPLE
Array begins:
====================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------
0 | 1 1 1 2 2 5 5 14 ...
1 | 1 2 3 6 8 18 23 56 ...
2 | 1 4 7 18 26 68 91 248 ...
3 | 3 10 19 52 82 220 321 872 ...
4 | 8 29 57 166 270 769 1151 3296 ...
5 | 23 86 176 524 890 2568 4020 11558 ...
6 | 68 266 557 1722 2986 8902 14197 42026 ...
7 | 215 844 1806 5664 10076 30362 49762 148208 ...
...
PROG
(PARI) \\ See link in A169808 for script.
A169809Array(7) \\ Andrew Howroyd, Feb 22 2021
CROSSREFS
Columns k=0..3 are A002712, A005505, A005506, A005507.
Rows n=0..2 are A208355, A005508, A005509.
Antidiagonal sums give A005028.
Cf. A146305 (rooted), A169808 (unrooted), A262586 (oriented).
Sequence in context: A196686 A213088 A357564 * A214962 A350809 A366525
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 25 2010
EXTENSIONS
Edited and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021
STATUS
approved