OFFSET
1,2
COMMENTS
Conjecture: For no term n>1 in the sequence 36*n^2+72*n+35 is equal to p*(p+2), where p, p+2 are twin primes.
This conjecture is evident: in fact, it is sufficient to observe that a(2k) = 11*k-3 and a(2k+1) = 11*k+1, therefore 6*a(2k)+7 = 11*(6*k-1) and 6*a(2k+1)+5 = 11*(6*k+1). [Bruno Berselli, Jan 07 2013, modified Jul 07 2015]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = (-15+3*(-1)^n+22*n)/4. a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: x*(1+7*x+3*x^2)/((1-x)^2*(1+x)). [Colin Barker, May 15 2012, modified Jul 07 2015]
MATHEMATICA
Select[Range[316], MemberQ[{1, 8}, Mod[#, 11]]&] (* Ray Chandler, Jul 07 2015 *)
LinearRecurrence[{1, 1, -1}, {1, 8, 12}, 58] (* Ray Chandler, Jul 07 2015 *)
Rest[CoefficientList[Series[x*(1+7*x+3*x^2)/((1-x)^2*(1+x)), {x, 0, 58}], x]] (* Ray Chandler, Jul 07 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 02 2009
EXTENSIONS
3 leading terms added. Conjecture clarified. - R. J. Mathar, Jul 07 2015
STATUS
approved