[go: up one dir, main page]

login
A167876
A000004 preceded by 1, 3, 4, 2.
2
1, 3, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Inverse binomial transform of A167875.
FORMULA
a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 2, a(n) = 0 for n > 3.
G.f.: (1+x)*(1+2*x+2*x^2).
PROG
(PARI) {concat([1, 3, 4, 2], vector(99))}
CROSSREFS
Cf. A000004 (zero sequence), A167875 (one third of product plus sum of three consecutive nonnegative integers), A166926 (1, 2, 4, 0, 0, 0, 0, ...), A130706 (1, 2, 0, 0, 0, 0, ...), A130779 (1, 1, 2, 0, 0, 0, 0, ...), A167858 (3, 14, 36, 36, 12, 0, 0, 0, ...).
Sequence in context: A157783 A123951 A123127 * A241833 A332096 A077451
KEYWORD
easy,nonn
AUTHOR
Klaus Brockhaus, Nov 14 2009
STATUS
approved