[go: up one dir, main page]

login
A167699
Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
1
1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021468, 213516729579636, 5764951698650172, 155653695863554644, 4202649788315975388, 113471544284531335476, 3063731695682346057474
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170747, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, -351).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^15 - 26*t^14 - 26*t^13 - 26*t^12 - 26*t^11 - 26*t^10 - 26*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1).
MATHEMATICA
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^15 - 26*t^14 - 26*t^13 - 26*t^12 - 26*t^11 - 26*t^10 - 26*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 20 2016 *)
coxG[{15, 351, -26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 19 2018 *)
CROSSREFS
Sequence in context: A167081 A167235 A063817 * A167943 A168705 A168753
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved