[go: up one dir, main page]

login
A167327
Totally multiplicative sequence with a(p) = 8*(p+3) for prime p.
1
1, 40, 48, 1600, 64, 1920, 80, 64000, 2304, 2560, 112, 76800, 128, 3200, 3072, 2560000, 160, 92160, 176, 102400, 3840, 4480, 208, 3072000, 4096, 5120, 110592, 128000, 256, 122880, 272, 102400000, 5376, 6400, 5120, 3686400, 320, 7040, 6144, 4096000, 352, 153600
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (8*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (8*(p(k)+3))^e(k).
a(n) = A165829(n) * A166591(n) = 8^bigomega(n) * A166591(n) = 8^A001222(n) * A166591(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*8^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 09 2016 *)
f[p_, e_] := (8*(p+3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 21 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved