[go: up one dir, main page]

login
A167015
Triangle T, read by rows, where T(n,k) = [T^n](n-k-1,0); i.e., where row n of T equals the initial n terms of column 0 in matrix power T^n, reversed and with an appended '1', for n>0, with T(0,0)=1.
8
1, 1, 1, 2, 1, 1, 9, 3, 1, 1, 70, 14, 4, 1, 1, 755, 105, 20, 5, 1, 1, 10166, 1080, 149, 27, 6, 1, 1, 161350, 13916, 1491, 203, 35, 7, 1, 1, 2917524, 212634, 18612, 2002, 268, 44, 8, 1, 1, 58811631, 3723198, 275856, 24429, 2628, 345, 54, 9, 1, 1, 1302452122, 73047825
OFFSET
0,4
COMMENTS
Although only the right portion of this triangle is shown here, by definition this triangular matrix can be extended infinitely to the left as well.
EXAMPLE
Triangle T begins:
1;
1,1;
2,1,1;
9,3,1,1;
70,14,4,1,1;
755,105,20,5,1,1;
10166,1080,149,27,6,1,1;
161350,13916,1491,203,35,7,1,1;
2917524,212634,18612,2002,268,44,8,1,1;
58811631,3723198,275856,24429,2628,345,54,9,1,1;
1302452122,73047825,4699180,353300,31562,3385,435,65,10,1,1;
31362843270,1581256303,89993827,5877619,447568,40227,4290,539,77,11,1,1;
814897356483,37350588290,1907644760,110140398,7295576,561607,50662,5361,658,90,12,1,1;
22712570157056,954796686233,44253266889,2289730547,134056234,8995558,698737,63128,6617,793,104,13,1,1;
675859219349848,26246234745486,1113845999245,52215711142,2736921663,162397676,11026087,862680,77910,8078,945,119,14,1,1; ...
in which row n is formed from column 0 of T^n.
Matrix square T^2 begins:
1;
2, 1;
5, 2, 1;
23, 7, 2, 1;
171, 35, 9, 2, 1;
1770, 259, 49, 11, 2, 1;
23128, 2579, 369, 65, 13, 2, 1;
359326, 32237, 3614, 503, 83, 15, 2, 1; ...
where column 0 of T^2 forms row 2 of T: [2,1,1].
Matrix cube T^3 begins:
1;
3, 1;
9, 3, 1;
43, 12, 3, 1;
312, 64, 15, 3, 1;
3121, 474, 88, 18, 3, 1;
39616, 4615, 675, 115, 21, 3, 1;
602135, 56173, 6538, 918, 145, 24, 3, 1; ...
where column 0 of T^3 forms row 3 of T: [9,3,1,1].
Matrix 4th power T^4 begins:
1;
4, 1;
14, 4, 1;
70, 18, 4, 1;
503, 102, 22, 4, 1;
4898, 763, 138, 26, 4, 1;
60517, 7324, 1083, 178, 30, 4, 1;
899764, 87171, 10454, 1467, 222, 34, 4, 1; ...
where column 0 of T^4 forms row 4 of T: [70,14,4,1,1].
Matrix 5th power T^5 begins:
1;
5, 1;
20, 5, 1;
105, 25, 5, 1;
755, 150, 30, 5, 1;
7206, 1140, 200, 35, 5, 1;
86895, 10861, 1610, 255, 40, 5, 1;
1264270, 126940, 15576, 2170, 315, 45, 5, 1; ...
where column 0 of T^5 forms row 5 of T: [755,105,20,5,1,1].
Matrix 6th power T^6 begins:
1;
6, 1;
27, 6, 1;
149, 33, 6, 1;
1080, 209, 39, 6, 1;
10166, 1620, 275, 45, 6, 1;
120012, 15401, 2274, 347, 51, 6, 1;
1710097, 177477, 22142, 3048, 425, 57, 6, 1; ...
where column 0 of T^6 forms row 6 of T: [10166,1080,149,27,6,1,1].
PROG
(PARI) {T(n, k)=local(M, N); if(n==k||n==k+1, 1, if(n==k+2, k+2, N=matrix(n, n, r, c, if(r>=c, T(r-1, c-1))); M=matrix(n+1, n+1, r, c, if(r>=c, if(r<=n, N[r, c], (N^n)[n-k, 1]))); M[n+1, k+1]))}
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 27 2009
EXTENSIONS
Edited by Paul D. Hanna, Oct 30 2009
STATUS
approved