%I #2 Mar 30 2012 18:37:18
%S 1,2,9,60,560,6720,98826,1722084,34700940,793894860,20329008975,
%T 576026191026,17893288364952,604630781494558,22079861395250568,
%U 866509034147074284,36367487433847501620,1625458443704631873072
%N a(n) = coefficient of x^n in the n-th iteration of (x + x^2 + x^3) for n>=1.
%e Let F_n(x) denote the n-th iteration of F(x) = x + x^2 + x^3;
%e then coefficients in the successive iterations of F(x) begin:
%e F(x):[(1), 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
%e F_2: [1, (2), 4, 6, 8, 8, 6, 3, 1, 0, 0, ...];
%e F_3: [1, 3, (9), 24, 60, 138, 294, 579, 1053, 1767, 2739, ...];
%e F_4: [1, 4, 16, (60), 216, 744, 2460, 7818, 23910, 70446, 200160, ...];
%e F_5: [1, 5, 25, 120, (560), 2540, 11220, 48330, 203230, 835080, ...];
%e F_6: [1, 6, 36, 210, 1200, (6720), 36930, 199365, 1058175, ...];
%e F_7: [1, 7, 49, 336, 2268, 15078, (98826), 639093, 4080531, ...];
%e F_8: [1, 8, 64, 504, 3920, 30128, 228984, (1722084), 12821788, ...];
%e F_9: [1, 9, 81, 720, 6336, 55224, 477000, 4085028, (34700940), ...];
%e F_10:[1, 10, 100, 990, 9720, 94680, 915390, 8787735, 83795085, (793894860), ...]; ...
%e where the coefficients along the diagonal (shown above in parenthesis)
%e form the initial terms of this sequence.
%o (PARI) {a(n)=local(F=x+x^2+x^3, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}
%Y Cf. A166880, A166881, A166883, A166884.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Oct 22 2009