%I #12 Nov 24 2016 09:46:47
%S 1,45,1980,87120,3833280,168664320,7421230080,326534123520,
%T 14367501434880,632170063134720,27815482777927680,1223881242228817920,
%U 53850774658067987490,2369434084954991406000,104255099738019619948350
%N Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
%C The initial terms coincide with those of A170764, although the two sequences are eventually different.
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A166738/b166738.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
%F G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^12 - 43*t^11 - 43*t^10 - 43*t^9 -43*t^8 -43*t^7 -43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1).
%t coxG[{12,946,-43}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jan 16 2016 *)
%t CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(946*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, May 24 2016 *)
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009