[go: up one dir, main page]

login
A166533
Numbers whose cube is a concatenation of exactly three primes (leading zeros allowed).
1
13, 15, 18, 29, 33, 38, 39, 43, 45, 48, 55, 59, 63, 68, 73, 83, 91, 95, 98, 103, 108, 111, 117, 125, 131, 137, 148, 149, 161, 163, 171, 173, 175, 177, 179, 217, 233, 235, 237, 241, 258, 259, 275, 278, 289, 293, 295, 297, 321, 337, 339, 357, 377, 378, 388, 391
OFFSET
1,1
COMMENTS
The three primes are not necessarily all distinct. All even terms k are == 8 (mod 10) (and hence k^3 == 2 (mod 10)).
EXAMPLE
13^3 = 2197 => { 2, 19, 7};
15^3 = 3375 => { 3, 37, 5};
18^3 = 5832 => { 5, 83, 2};
43^3 = 79507 => {79, 5, 07} (first case with leading zero);
48^3 = 110592 => {11, 059, 2} (next case with leading zero).
MATHEMATICA
s={}; Do[id=IntegerDigits[n^3]; Le=Length@id; Do[t=FromDigits/@{Take[id, k], Take[id, {k+1, m}], Take[id, m-Le]}; If[PrimeQ[t]=={True, True, True}, AppendTo[s, n]; Goto[ne]], {k, Le-2}, {m, k+1, Le-1}]; Label[ne], {n, 5, 800}]; s
CROSSREFS
Cf. A166534 (version with leading zeros not allowed), A038840 Cubes that are concatenations of primes.
Sequence in context: A079829 A096090 A037286 * A166534 A126727 A340618
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Oct 16 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Mar 23 2010
STATUS
approved