[go: up one dir, main page]

login
A166453
Triangle read by rows, square of Sierpinski's gasket, (A047999)^2
1
1, 2, 1, 2, 0, 1, 4, 2, 2, 1, 2, 0, 0, 0, 1, 4, 2, 0, 0, 2, 1, 4, 0, 2, 0, 2, 0, 1, 8, 4, 4, 2, 4, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 2, 1, 4, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1
OFFSET
0,2
COMMENTS
Row sums = A048883: (1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27,...)
Left border = A001316
LINKS
E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 13.
FORMULA
(A047999)^2, as an infinite lower triangular matrix.
EXAMPLE
First few rows of the triangle =
1;
2, 1;
2, 0, 1;
4, 2, 2, 1;
2, 0, 0, 0, 1;
4, 2, 0, 0, 2, 1;
4, 0, 2, 0, 2, 0, 1;
8, 4, 4, 2, 4, 2, 2, 1;
2, 0, 0, 0, 0, 0, 0, 0, 1;
4, 2, 0, 0, 0, 0, 0, 0, 2, 1;
4, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1;
8, 4, 4, 2, 0, 0, 0, 0, 4, 2, 2, 1;
4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1;
...
MATHEMATICA
rows = 11;
T = PadRight[#, rows]& /@ Mod[NestList[Prepend[#, 0] + Append[#, 0]&, {1}, rows-1], 2];
T2 = T.T;
Table[T2[[i, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 08 2018, after Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 13 2009
STATUS
approved