[go: up one dir, main page]

login
A164963
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
0
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785300, 2751882840000, 66045187987500, 1585084507560000, 38042028082080000, 913008671585280000, 21912208060815360000, 525892992086016000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170744, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(276*t^8 -
23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1)
MATHEMATICA
coxG[{8, 276, -23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 13 2017 *)
CROSSREFS
Sequence in context: A163525 A163993 A164638 * A165368 A165967 A166419
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved