[go: up one dir, main page]

login
A164651
Number of permutations of length n that avoid both 1243 and 2134.
1
1, 1, 2, 6, 22, 87, 354, 1459, 6056, 25252, 105632, 442916, 1860498, 7826120, 32956964, 138911074, 585926818, 2472923499, 10442263142, 44112331275, 186413949540, 788000866243, 3331853294090, 14090947775581, 59604161832772
OFFSET
0,3
COMMENTS
Le proved that this also gives the number of permutations of length n that avoid both 1342 and 3124.
For n>=1, a(n) is the number of paths of North steps N = (0,1), East steps E = (1,0), and Diagonal steps D = (1,1) from the origin to (n-1,n-1) such that all D steps lie on the diagonal line y = x and the first step away from the diagonal (if there is one) is a North step. For example, a(3) = 6 counts DD, DNE, NED, NENE, NEEN, NNEE. - David Callan, Jun 25 2013
LINKS
David Callan, The number of {1243, 2134}-avoiding permutations, arXiv:1303.3857 [math.CO], 2013.
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Ian Le, Wilf classes of pairs of permutations of length 4, Electron. J. Combin., 12(1) (2005), Research article 25, 26 pages.
FORMULA
From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3*x^2-9*x+2+x*(1-x)*sqrt(1-4*x))/(2*(x-1)*(x^2+4*x-1)).
Recurrence: (n-4)*(n-1)*a(n) = (9*n^2 - 51*n + 62)*a(n-1) - (23*n^2 - 145*n + 222)*a(n-2) + (11*n^2 - 73*n + 122)*a(n-3) + 2*(n-3)*(2*n-7)*a(n-4).
a(n) ~ (1/2-1/sqrt(5))*(sqrt(5)+2)^n. (End)
These formulas were conjectured by Vaclav Kotesovec and proved correct by David Callan (see Link).
a(n) = (A026671(n-1) + 1)/2 for n >= 1. - David Callan, Jun 25 2013
a(n-1) = Sum_{k=0..n} binomial(n, k)*A358092(k) for n >= 1. - Peter Luschny, Oct 29 2022
MATHEMATICA
CoefficientList[Series[(3*x^2-9*x+2+x*(1-x)*Sqrt[1-4*x])/(2*(x-1)*(x^2+4*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 28 2012 *)
CROSSREFS
Sequence in context: A150260 A165532 A165533 * A279566 A367413 A150261
KEYWORD
nonn
AUTHOR
Vincent Vatter, Aug 19 2009
STATUS
approved