[go: up one dir, main page]

login
A164611
Expansion of (1 + x + 2*x^2 - x^3)/(1 - 2*x + 3*x^2 - 2*x^3 + x^4).
2
1, 3, 5, 2, -6, -11, -5, 9, 17, 8, -12, -23, -11, 15, 29, 14, -18, -35, -17, 21, 41, 20, -24, -47, -23, 27, 53, 26, -30, -59, -29, 33, 65, 32, -36, -71, -35, 39, 77, 38, -42, -83, -41, 45, 89, 44, -48, -95, -47, 51, 101
OFFSET
0,2
COMMENTS
Hankel transform of A113682.
FORMULA
G.f.: (1+x+2*x^2-x^3)/(1-x+x^2)^2.
a(n) = 2*a(n-1)-3*a(n-2)+2*a(n-3)-a(n-4), with a(0)=1, a(1)=3, a(2)=5, a(3)=2. - Harvey P. Dale, May 28 2013
MATHEMATICA
CoefficientList[Series[(1+x+2x^2-x^3)/(1-2x+3x^2-2x^3+x^4), {x, 0, 80}], x] (* or *) LinearRecurrence[{2, -3, 2, -1}, {1, 3, 5, 2}, 80] (* Harvey P. Dale, May 28 2013 *)
PROG
(PARI) x='x+O('x^50); Vec((1 +x +2*x^2 -x^3)/(1 -2*x +3*x^2 -2*x^3 +x^4)) \\ G. C. Greubel, Aug 10 2017
CROSSREFS
Sequence in context: A139584 A064790 A113966 * A316086 A227988 A182813
KEYWORD
easy,sign
AUTHOR
Paul Barry, Aug 17 2009
STATUS
approved