OFFSET
1,1
COMMENTS
The primes of A080359 larger than 3 all have the property that the integers in the interval selected by halving the value of the preceding prime and halving their own value are all composite. This sequence here collects the primes that are not in A080359 but still share this property of the prime-free subinterval.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..1106
V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009. [From Vladimir Shevelev, Aug 20 2009]
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
EXAMPLE
MATHEMATICA
maxPrime = 3500;
kmax = PrimePi[maxPrime];
A164333 = Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ] &][[All, 2]]*2 + 1;
b[1] = 2; b[n_] := b[n] = Module[{k = b[n - 1]}, While[(PrimePi[k] - PrimePi[Quotient[k, 2]]) != n, k++]; k];
A080359 = Reap[For[n = 1, b[n] <= maxPrime, n++, Sow[b[n]]]][[2, 1]];
PROG
(PARI) okprime(p) = { my(k = primepi(p)); for (i = (prime(k-1)+1)/2, (prime(k)-1)/2, if (isprime(i), return (0)); ); return (1); }
lista(nn) = {vlp = readvec("b080359.txt"); forprime (p=2, nn, if (! vecsearch(vlp, p) && okprime(p), print1(p, ", ")); ); } \\ Michel Marcus, Jan 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 12 2009
EXTENSIONS
Extended beyond 571 by R. J. Mathar, Oct 02 2009
STATUS
approved