[go: up one dir, main page]

login
A162628
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) / (1-x)^11.
1
1, 11, 66, 285, 990, 2937, 7721, 18436, 40689, 84084, 164307, 305955, 546260, 939862, 1564782, 2529737, 3982924, 6122379, 9207990, 13575210, 19650477, 27968304, 39189954, 54123564, 73745529, 99222903, 131936520, 173504485
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MATHEMATICA
CoefficientList[ Series[Times @@ (1 - x^(3 Range@11))/(1 - x)^11, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A297751 A063842 A331715 * A247610 A008503 A008493
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved