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Like Pascal’s triangle, Faulhaber’s triangle is easy to draw: all you need
is pen, paper and a little recursion. The rows of Fanlhaber’s triangle are
the coefficients of polynomials that represent sums of integer powers. Such
polynomials are often called Faulhaber formulae [2], after Johann Faulhaber
(1580-1635); hence we dub the triangle Faulhaber’s triangle.

Constructing Faulhaber’s triangle

Draw a right triangle, similar to the one shown in Figure 1. Number the
rows, starting with row 0; number the columns from left to right, starting ?
with column 1. The numbers on row { are found using the following recursive

rules:

e The leftmost element of each row is chosen such that the row sums

to 1. In particular, the only number on row 0 is 1.

e The element at row i and column j (1 < j < i+ 1) is found by
multiplying the number directly above and to the left by i

Sums of integer powers

The sum of integer powers 17 4 2P + ... 4+ nP, with integers n,p > 0, is a
polynomial in n of degree p + 1. That is f,(n) = apn?™ +apn? +--- +
ain + ag. Taking n = 0, it follows immediately that ag = 0. In order to find
the coefficients of the polynomial, we draw Faulhaber’s triangle. Row p of

the triangle gives the coefficients ay,--- ,apy1.
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Figure 1: Faulhaber’s triangle
For instance, to find f4(n) we use row 4 of Figure 1: a1 = —315, =0

a3 = 3, as = 3 and a5 = 3. That is .
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We now observe that f,(n) is always of the shape ﬁn”‘* L4 anP +
a,,_ln”'1 + ap_3np“3 + ..., with all coefficients a,_9r = 0 for k > 0. We
also note that the numbers appearing on the vertical leg (leftmost column)
of Faulhaber’s triangle are the Bernoulli numbers, namely By = 1, B; = %,
e = %, e =) By = —3%, etc. This is due to the well-know Bernoulli
formula stating f,(n) = p—%-f A Gk T
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Why it works

Suppose the coefficient of n® is a in f{n), for some 1 < a < b+ 1, and
the coefficient of n% ! in f;_1(n) is 8. It can be shown that a = gﬁ,
cf. [1, 3]. In Faulhaber’s triangle, this corresponds to row b—1 containing 3 at
column a—1, and row b containing « at column a. Note that our construction
of Faulhaber’s triangle ensures ov = g B.

Next, observe that f,(1) = ap41 + -+ a1 = 1, for all p, so that a; =
1 — (ap+1 + -+ -+ ag). This is the reason the leftmost element of each row is
chosen such that the values on the row sum up to 1.

Now, by a straightforward induction, if the numbers on row p are the

coefficients of f,(n), then the numbers on row p + 1 are the coefficients
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of fp+1(n). The base case is immediate, as fo(n) = n.
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