OFFSET
1,1
COMMENTS
(-36, a(1)) and (A161478(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+113)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (129+44*sqrt(2))/113 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (16131+6970*sqrt(2))/113^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=85, a(2)=113, a(3)=173, a(4)=337, a(5)=565, a(6)=953.
G.f.: (1-x)*(85+198*x+371*x^2+198*x^3+85*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 113*A001653(k) for k >= 1.
EXAMPLE
PROG
(PARI) {forstep(n=-36, 10000000, [3, 1], if(issquare(2*n^2+226*n+12769, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved