[go: up one dir, main page]

login
A161002
Least prime of three consecutive primes (p1,p2,p3) such that p2-p1 and p3-p2 are both perfect squares.
6
9547, 12853, 22189, 22303, 27127, 29881, 32257, 40387, 42859, 46771, 46957, 47977, 57601, 60037, 60457, 71593, 72577, 73783, 77101, 84247, 88423, 89137, 90547, 93427, 97459, 97609, 97879, 112507, 115021, 118927, 126271, 127873, 131317
OFFSET
1,1
COMMENTS
Sequence is probably infinite.
a(3859) = 11981443 is the first term in the sequence where neither of the prime gaps is 36.
LINKS
EXAMPLE
Consecutive primes (22189, 22193, 22229) have gaps (4, 36) so 22189 is in the sequence.
MATHEMATICA
Transpose[Select[Partition[Prime[Range[12300]], 3, 1], IntegerQ[Sqrt[#[[2]]- #[[1]]]]&&IntegerQ[Sqrt[#[[3]]-#[[2]]]]&]][[1]] (* Harvey P. Dale, Dec 21 2011 *)
CROSSREFS
Cf. A138198.
Sequence in context: A202613 A236161 A252512 * A134117 A353088 A232189
KEYWORD
nonn
AUTHOR
Ki Punches, Jun 01 2009
EXTENSIONS
Edited by Ray Chandler, Jun 08 2009
STATUS
approved