[go: up one dir, main page]

login
A160859
Primes p such that p^3 + p^2 - 1 and p^3 + p^2 + 1 are prime.
0
2, 5, 11, 47, 71, 89, 179, 317, 461, 659, 1481, 1499, 1511, 2141, 2441, 2549, 2777, 2879, 2909, 3221, 3659, 3677, 3701, 4229, 4337, 4691, 5669, 5807, 7517, 8147, 8867, 9029, 9311, 10271, 13907, 14327, 14747, 15107, 15269, 16217, 16301, 16937, 17627
OFFSET
1,1
COMMENTS
2^3 + 2^2 - 1 = 11, 2^3 + 2^2 + 1 = 13
MATHEMATICA
lst={}; Do[p=Prime[n]; a=p^2; b=p^3; c=b+a; If[PrimeQ[c-1]&&PrimeQ[c+1], AppendTo[lst, p]], {n, 2*7!}]; lst
ppQ[n_]:=Module[{c=n^3+n^2}, And@@PrimeQ[c+{1, -1}]]; Select[Prime[Range[ 2100]], ppQ] (* Harvey P. Dale, Jan 18 2013 *)
CROSSREFS
Sequence in context: A088148 A088149 A153989 * A106887 A236044 A285809
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Charles R Greathouse IV, Nov 11 2009
STATUS
approved