[go: up one dir, main page]

login
A160750
Expansion of (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
1
1, 16, 94, 331, 880, 1951, 3811, 6784, 11251, 17650, 26476, 38281, 53674, 73321, 97945, 128326, 165301, 209764, 262666, 325015, 397876, 482371, 579679, 691036, 817735, 961126, 1122616, 1303669, 1505806, 1730605, 1979701, 2254786, 2557609
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website.
The coefficient of x^4 should be 1 rather than 10, and so this is an erroneous version of A294433. However, it remains in the OEIS in accordance with our policy of including published but erroneous sequences, to serve as pointers to the correct versions. - N. J. A. Sloane, Oct 30 2017
LINKS
J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, Discrete Comput. Geom., 42 (2009), 670-702.
D. C. Haws, Matroids [Broken link, Oct 30 2017]
D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
FORMULA
G.f.: (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
a(n) = 19*n^4/8 +7*n^3/4 +77*n^2/8 +5*n/4 +1. - R. J. Mathar, Sep 11 2011
E.g.f.: (1/8)*(19*x^4 + 128*x^3 + 252*x^2 + 120*x + 1)*exp(x). - G. C. Greubel, Apr 26 2018
MATHEMATICA
Table[(19*n^4 +14*n^3 +77*n^2 +10*n +1)/8, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 16, 94, 331, 880}, 30] (* G. C. Greubel, Apr 26 2018 *)
PROG
(Magma) [19*n^4/8+7*n^3/4+77*n^2/8+5*n/4+1: n in [0..50]]; // Vincenzo Librandi, Sep 18 2011
(PARI) x='x+O('x^30); Vec((1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5) \\ G. C. Greubel, Apr 26 2018
CROSSREFS
Cf. A294433.
Sequence in context: A305639 A317033 A294433 * A305908 A316880 A317150
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved