[go: up one dir, main page]

login
A160440
Smaller member of a pair (p,q) of cousin primes such that p and q are in different centuries.
9
97, 397, 499, 1297, 1597, 1999, 2797, 3697, 4999, 6199, 6997, 7699, 9199, 10099, 10597, 12097, 13099, 16699, 18397, 20899, 21397, 21499, 21799, 23197, 23599, 25999, 26497, 27697, 27799, 27997, 32299, 32797, 33199, 34297, 35797, 38197, 38299, 39499, 42697
OFFSET
1,1
COMMENTS
Sequence is probably infinite.
Dickson's conjecture implies there are infinitely many pairs of primes (100*k-3, 100*k+1) and infinitely many pairs of primes (100*k-1, 100*k+3). - Robert Israel, Mar 28 2023
It appears that every integer occurs as the difference round((a(n+1)-a(n))/100); all numbers 1..298 occur as these differences for a(n) < 1000000000. - Hartmut F. W. Hoft, May 18 2017
LINKS
FORMULA
{A023200(n): [A023200(n)/100] <> [A046132(n)/100]}, where [..]=floor(..).
EXAMPLE
Cousin primes 1597 and 1601 are in successive (that is 16th and 17th) centuries.
MAPLE
R:= NULL: count:= 0:
for i from 1 while count < 100 do
if ((i mod 3 = 1) and isprime(100*i-3) and isprime(100*i+1)) then
R:= R, 100*i-3; count:= count+1
elif ((i mod 3 = 2) and isprime(100*i-1) and isprime(100*i+3)) then
R:= R, 100*i-1; count:= count+1
fi od:
R; # Robert Israel, Mar 28 2023
MATHEMATICA
a160440[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[100, n, 100]], First[#]-Last[#]==4&]]
a160440[43000] (* data *) (* Hartmut F. W. Hoft, May 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ki Punches, May 13 2009
EXTENSIONS
Edited by R. J. Mathar, May 14 2009
STATUS
approved