[go: up one dir, main page]

login
A158580
a(n) = Hermite(n, 15).
1
1, 30, 898, 26820, 799212, 23761800, 704861880, 20860714800, 615953377680, 18144829893600, 533257736009760, 15634835482420800, 457313394280409280, 13344165776834179200, 388434825053734734720, 11279408109860685024000
OFFSET
0,2
COMMENTS
First negative terms is a(124). - Georg Fischer, Feb 15 2019
LINKS
FORMULA
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(30*x - x^2).
a(n) = 30*a(n-1) - 2*(n-1)*a(n-2). (End)
MATHEMATICA
HermiteH[Range[0, 20], 15] (* Harvey P. Dale, Oct 23 2015 *)
With[{nmax = 50}, CoefficientList[Series[Exp[30*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(30*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(30*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 15), ", ")) \\ G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A170711 A170749 A218732 * A171335 A097313 A056389
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved