OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From R. J. Mathar, Oct 16 2009: (Start)
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 11*(1+9*x+12*x^2)/(1-x)^3. (End)
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(11))*Pi/sqrt(11) + 1)/22.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(11))*Pi/sqrt(11) + 1)/22. (End)
MATHEMATICA
121Range[0, 40]^2+11 (* Harvey P. Dale, Mar 04 2011 *)
LinearRecurrence[{3, -3, 1}, {11, 132, 495}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
PROG
(Magma) I:=[11, 132, 495]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 12 2012
(PARI) for(n=1, 40, print1(121*n^2+11", ")); \\ Vincenzo Librandi, Feb 12 2012
CROSSREFS
KEYWORD
nonn,less,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved