OFFSET
1,1
COMMENTS
The identity (324*n-1)^2-(324*n^2-2*n)*(18)^2=1 can be written as A158306(n)^2-a(n)*(18)^2=1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(18^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
Contribution from Harvey P. Dale, Jul 14 2011: (Start)
G.f.: -2*x*(163*x+161)/(x-1)^3.
a(1)=322, a(2)=1292, a(3)=2910, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
MATHEMATICA
Table[324n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {322, 1292, 2910}, 40] (* Harvey P. Dale, Jul 14 2011 *)
PROG
(Magma) I:=[322, 1292, 2910]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 324*n^2 - 2*n.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved