[go: up one dir, main page]

login
A158305
324n^2 - 2n.
2
322, 1292, 2910, 5176, 8090, 11652, 15862, 20720, 26226, 32380, 39182, 46632, 54730, 63476, 72870, 82912, 93602, 104940, 116926, 129560, 142842, 156772, 171350, 186576, 202450, 218972, 236142, 253960, 272426, 291540, 311302, 331712
OFFSET
1,1
COMMENTS
The identity (324*n-1)^2-(324*n^2-2*n)*(18)^2=1 can be written as A158306(n)^2-a(n)*(18)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(18^2*t-2)).
FORMULA
Contribution from Harvey P. Dale, Jul 14 2011: (Start)
G.f.: -2*x*(163*x+161)/(x-1)^3.
a(1)=322, a(2)=1292, a(3)=2910, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
MATHEMATICA
Table[324n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {322, 1292, 2910}, 40] (* Harvey P. Dale, Jul 14 2011 *)
PROG
(Magma) I:=[322, 1292, 2910]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 324*n^2 - 2*n.
CROSSREFS
Cf. A158306.
Sequence in context: A251231 A252274 A114358 * A237406 A234712 A234705
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved