[go: up one dir, main page]

login
A158044
Determinant of power series of gamma matrix with determinant 6!.
2
720, 8482320, 23846746320, 46069117007760, 78423934939027920, 126377664053739048720, 199725313669091369807760, 316583663401497456387173520, 508625335390476191389947899280
OFFSET
0,1
COMMENTS
a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n)
where A is the submatrix A(1..7,1..7) of the matrix with factorial determinant
A = [[1,1,1,1,1,1,...], [1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008
EXAMPLE
a(1) = Determinant(A) = 6! = 720.
MAPLE
seq(Determinant(sum(A^i, i=1..n)), n=1..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved