OFFSET
0,3
COMMENTS
The Levi Graph has 30 nodes and 45 edges.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Weisstein, Eric W. "Levi Graph".
Weisstein, Eric W. "Chromatic Polynomial".
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = n^30 -45*n^29 + ... (see Maple program).
MAPLE
a:= n-> n^30 -45*n^29 +990*n^28 -14190*n^27 +148995*n^26 -1221759*n^25 +8145060*n^24 -45379530*n^23 +215549775*n^22 -886099793*n^21 +3189425574*n^20 -10143911580*n^19 +28714411485*n^18 -72754429695*n^17 +165716335841*n^16 -340379666835*n^15 +631649660595*n^14 -1059695941005*n^13 +1606062587021*n^12 -2193946401123*n^11 +2690139367971*n^10 -2941870019235*n^9 +2842645627185*n^8 -2395149923590*n^7 +1727156333706*n^6 -1037572912125*n^5 +498710054365*n^4 -179700698265*n^3 +43072277935*n^2 -5133307729*n:
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 10 2009
STATUS
approved