[go: up one dir, main page]

login
A157853
3600n^2 - 1601n + 178.
3
2177, 11376, 27775, 51374, 82173, 120172, 165371, 217770, 277369, 344168, 418167, 499366, 587765, 683364, 786163, 896162, 1013361, 1137760, 1269359, 1408158, 1554157, 1707356, 1867755, 2035354, 2210153, 2392152, 2581351, 2777750
OFFSET
1,1
COMMENTS
The identity (103680000*n^2-46108800*n+5126401)^2-(3600*n^2-1601*n +178)*(1728000*n-384240)^2=1 can be written as A157855(n)^2-a(n)*A157854(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-2177-4845*x-178*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {2177, 11376, 27775}, 40]
PROG
(Magma) I:=[2177, 11376, 27775]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 3600*n^2 - 1601*n + 178.
CROSSREFS
Sequence in context: A170776 A250240 A157476 * A072141 A008918 A262792
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 08 2009
STATUS
approved