[go: up one dir, main page]

login
A157325
a(n) = 1728*n + 24.
3
1752, 3480, 5208, 6936, 8664, 10392, 12120, 13848, 15576, 17304, 19032, 20760, 22488, 24216, 25944, 27672, 29400, 31128, 32856, 34584, 36312, 38040, 39768, 41496, 43224, 44952, 46680, 48408, 50136, 51864, 53592, 55320, 57048, 58776
OFFSET
1,1
COMMENTS
The identity (10368*n^2 + 288*n + 1)^2 - (36*n^2 + n)*(1728*n + 24)^2 = 1 can be written as A157326(n)^2 - A157324(n)*a(n)^2 = 1 (see also second part of the comment at A157324). - Vincenzo Librandi, Jan 26 2012
FORMULA
G.f.: x*(1752 - 24*x)/(1-x)^2. - Vincenzo Librandi, Jan 26 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {1752, 3480}, 50] (* Vincenzo Librandi, Jan 26 2012 *)
1728*Range[40]+24 (* Harvey P. Dale, Feb 28 2016 *)
PROG
(Magma) I:=[1752, 3480]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(1728*n + 24", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
Sequence in context: A172882 A251892 A143994 * A223448 A102327 A076809
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 27 2009
STATUS
approved