OFFSET
1,1
COMMENTS
The identity (10368*n^2 + 288*n + 1)^2 - (36*n^2 + n)*(1728*n + 24)^2 = 1 can be written as A157326(n)^2 - A157324(n)*a(n)^2 = 1 (see also second part of the comment at A157324). - Vincenzo Librandi, Jan 26 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: x*(1752 - 24*x)/(1-x)^2. - Vincenzo Librandi, Jan 26 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {1752, 3480}, 50] (* Vincenzo Librandi, Jan 26 2012 *)
1728*Range[40]+24 (* Harvey P. Dale, Feb 28 2016 *)
PROG
(Magma) I:=[1752, 3480]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(1728*n + 24", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 27 2009
STATUS
approved