[go: up one dir, main page]

login
A156876
Number of primes <= n that are safe primes or Sophie Germain primes.
6
0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
OFFSET
1,3
LINKS
FORMULA
a(n) = A156874(n)+A156875(n)-A156877(n) = A000720(n)-A156878(n).
EXAMPLE
a(120) = #{2,3,5,7,11,23,29,41,47,53,59,83,89,107,113} = 15.
MATHEMATICA
Accumulate[Table[If[AllTrue[{n, 2n+1}, PrimeQ]||AllTrue[{n, (n-1)/2}, PrimeQ], 1, 0], {n, 100}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 24 2019 *)
PROG
(PARI) a(n) = my(nb=0); forprime(p=2, n, if (isprime(2*p+1) || isprime((p-1)/2), nb++)); nb; \\ Michel Marcus, Nov 06 2022
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 18 2009
STATUS
approved