SOME COUNTER-EXAMPLES IN THE

ADDITIVE THEORY OF NUMBERS

A THESIS

Presented in Pertial Mulfillment of 4he Requirements
for the Degree laster of Arte

by

rnoger Clement Crocker, B.A.

The Ohio State University
1652

Approved by

.# /y",

2

7~ Advisor
Department of Mathematics



ACKNOWLEDGH.ENT

It is a pleasure to ecknowledpge my gratitude to

Professor J, I’s Tull for his eadvice end cuidance in

the writing of this thesis,

ii



An importent problem in the additive theory of numbers
is concerned with the positive odd interers which@re repre-
sentable as the sum of an odd prime and e power of 2 (with
nositive exponent)., (It is understood that primes are posi-
tive.,) Homenoff, in 1093L4, showed that these intepers have
positive asymptotic density (1], Fe then conjectured that
every positive odd intecer Iro: some point onwerd is repre-
sentable in this menner, It is now %novn ihst, on the cone
trary, there is an infinity of odd positive integsers not having
this property 2, 3]; 4in fact, there is an arithmetic pro-
rression of positive odd interers not having this proverty,
so that the positive integers not the sum of a2 prime and e
pover of 2 also have positive density [2], (‘e shall rive
this result in rreater renerality as lemna 1.)

It is then interesting to inocuire further as to whether
there 1s an infinity of pairs of consecutive odd nunhers not
havins this property. Theorem 1 shows the answer to this
gueootion to be in the affirmative.

It is also interestines to consider whether averv odd

runber from some point onward is & sum

8
p 4 20 ¢ 2°

with p & prime and ¢ and s positive interers. Theorem 2

showe the answer %o this ocuestion to be in the nerative.,



Theorem 3 vroduecec a cless of odd numbers not the sunm of a

prime and a power of 2, These nunbers have been investirated in

other well=known ways, particulerly where the exponent is prime,
These first three theorems use techniques end reach resulis
which are extensions of those of [3],
The last two theorems are deductions from lemme 1, the
result nhteined in [2], The first of these shows that there
exists an arithmetic progression of positive integers not re-

rresentable es the difference of e prime snd a power of 2,

i well=lznown problem is the investipation of positive

: th
interers which are the sum of a prime and a % rower for a

riven > 2, 141 has been shown in this regard thet for each

22, 2lmost all positive intecers are representable as the

th

sun of a nrime and a %" power [4], The last theorem shows

the existence, for a certein %, of mn infinity of positive
interers not the sun of a prime and a non-negative kth pover,

nor the su- of & prime and a pover of 2, thus combining two

well=lnown problems,

Lemme 1. There exists en arithmetic prorression of odd in=
terers, ax ¢+ b (where x tekes all integer values

and (a,b)=1) which are not representable as 2°4 p

with P &a primﬁ-



Prooft Considrer a residue system 7y (mod ng), lgigw, with

:-'T‘i-'}. Oy V€N &n, 240, n ni.f 5, such that for every

X there is an i with xS ¢, (mod ni). llow for each i,

i
there exists a prime Py such that o'iz ) (mod pi),

and such that 2“54'1 (mod pi) for n,~<n This is

.
true by a theoren stating that for each n:'é-{’i, there
exists & prime p such that p \2” - 1 bhut pf?m -1,
for n&€n [5], v the Chinese remainder theorem there
is an integer t such that =071 (mod pi}, for all i,
lgisv, and =2V * e + o ¥ : $ 1 (mod an+ 5),
‘s are identical and no p, =2, Since

i i

the solution of this simultaneous system is unidgue

since no two p

modulo the »roduct of the moduli, if b is one soluw
tion then, = W Yo (1‘1: ) pi) X 4 b=ax 4 b rives
all solutions as x veries over the integers, Since
for each 1, (2‘”1, pi)_-.-.l, and since

(21']""-"""2 4 2’"“*1;"1 $ 1, 2" + 5) =1, then (g,b)=1,

Now 2% =t (mod pﬁ) and since 2 1=1 (mod pi}’

, PR . 2
2=~.H]_El (-;-;10(} I}i), for every k 1’?{:}811‘;1?6 or QO ;‘161’106,

for each i, o1 + kng =t (mod Pi)- Now by our choice

of the ~, and n,, for eech positive integer ¢ there

4 47

exiet i end k such that c= 5:1-4- kni. Thus for each c

there exists i such thet t52° (mod pi) for all

t=b (mode), Since Pi"zn“’ it only remeins % show



| t = 2° > 2™,
Now ¢ = 20z 2w #2 , vt 1l e (mod 2™ * 2y,
If ¢ n + 3, then 2°E 0 (mod oW . 3’).. Therefore

‘t - 20| o + 1 -152]1"’, for cénw + 3« HNow for
0 <c.::-nw+ 2y 1f ¢t is positive, t o +2 t 2“" +1+ 1
and so ¢t = 2°x 2 + 1 $132M, 1£ ¢ 4s nerative,
L& 2n”+ i $ 1 and so ¢t = 2°4 2n”.+ : + 1 and

| b - 2°| > 2w ¥ ¥ o 1> 2", Thus |t - 20[ 18 come

posite for all ¢=b (moda) and all cu3 O,

Oe¢ Lo Do

Throughout the following, » denotes an arbitrary odd prine,

and ex ¢ b an arithmetic propgression with (a,b)=1 which, for

each interer x, is not representable as 2°;|_-_ p, With ¢> 0,

Lomma 2.

Froof's

“or each integer n2 3, 22" w1 s not representable

as D ¢ 20 + 2d, Q#d-

Suppose that cad 40, N=22" « 1 = 2° =« 2% 0, and

let 2¥ be the lergest power of 2 dividing ¢ = d

" d
(ren). Then 2% ¢ 112°°¢ 41| 2° ¢ 2° and since

I''£ Ny 221' + 1 I22n - 1, Hence 221' . 1 ,I\I. On the
pe- -'1
other hand, for n2 3, Nng. P - 1 22‘1 -|-1-'3"..22r + 13

e d
1

1eCey N c; $ 1. Therefore N is composite and the

lerma follovs,

Qe Es Do



Theorenm 1.

roofs

Theorem 2.

Proof's

There is an infinity of pairs of consecutive odd

nunbers not representeble as p 4 2°.

Consider for n 3, 22n -5 and 22 5¢ 1f 22" o 5=
2° ¢+ vy, then c< 2" and 22% = 12 22 4 2% 4 p; hence by
lenma 2, ¢=2 and 80 p= 2" 9::(22“-1 + 5)(2211-1-5),
which is impossible, I 22" = 522¢ 4 p, then

22" L 1=2 + 2% & ps hence by lemma 2, ¢c=1 and

13:22n - Do llowever, if n=2 (mod 4) and n > 2,
since 2 is a primitive root mod 11, and 241-: + 22 =4

L

(mod 10), then 22nE 2'=5 (mod 11)s Thus for
nz2 (mod 4), (n2 %) s 221'1 5 18 composite, There=
fore none of the numbers 221']( ¥, 5 and 221”“2 - 3,
is a pum of a »nrime and a power of 2,

Qe Eo Do
There is an infinity of odd numbers not expressible

es p ¢ 2° ¢ 22’, with ¢ and s positive integers,

Talke 22211 - 1, n an integer=2 2, Suppose that N=

n
222 ] «2%a 2293-0. Ry the lemma 2, N is

.,
composite if ¢ #2%, If ¢=2% N=2 (221 o) .
(22° # 1 . 1), Now 22 41 |2° ¢ 1, where 2' is the

lerrest power of 2 dividing s (r<n since s 22"),

b3
Hence 222 “'1-1[22 +1 .,



2 41

n
vow 227 ¢ 122" < 1, hence 22 -1]22% =141

(r <n), Therefore 222!' +1 .1 ‘ri (r#n); also if

n
~N - 21
¢ =23, N> 22° -1-1-22! o2 =2 _ 4,

22" "t 2 w1 _,

Thus the rumber N is also comdvosite for c.-.-.-23.

Qs Bo De

Theoren 3, If n2 3, then 22" = 1 w1 i3 not representable as
p + 2%

Prooft  Consider =22 =1 .1« 2°=2(22" 0 1) = 22" = 1.0¢,
I£ 120, c22" =« 1, and hence by lemma 2, N is

connposite,

irom lemma 1, it follows
Theorem %4, There is an erithnetic prosression of positive odd
intepers not representable s p = 2°,
roof Choose X, such that ax, ¢ b <0+ Then for all x& X s

since by lemma 1, ax ¢ b is not of the form 2° - p,

|ax-rb\= - X = b 18 not of the formp-aa.

Ce Eo Dy



Theorem S5, There exists k3 2 such that an infinity of positive

odd integers is not representeble as p ¢ yk (y posie

tive or 0), nor as p ¢ 20.

)J(a) + 1

Proof’s Consider (ax ¢ b s X positive,

Now b‘(a)i 1 (mod 2) as a and b are coprime;
thus bH(8) * 1oy (mod a),

/
Nut (ax 4 b)d‘a) * 15 h"(a) + 1 (mo0d a),

dla) 4 1 . wr

lence (8x 4+ b) =b (mod &)t thus

g(a) + 1 g(a)el

(ex ¢ b) = ax’¢ b, Therefore (ax+ b)
is not representahble as p 4 2°, (Actually it is not
representable as 2° - p, as well),

low il 2%q=ex ¢ b or if q<s0, then

(0x + b)p'(et) + 1 g(a) + 1

- (ax ¢ b = q) is composite.
'sr q=1, one has a polynomiel of derree g(a) which
is comnposite for en infinity of X by a well='"nown

theorem, Therefore for an infinity of x,

(ax + b}ﬁ(a) + is not representable as p 4 yk,
iz :-.ﬁ(a) A ) I
Q¢ Es Do
\ a) 1

1
g>ax ¢+ by hence, as g{e) + 1 is odd, (ax ¢ b)‘(a) "

is not representable 88 p = yk, with y positive or 0,

k:ﬁ(!) +« 1,
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