[go: up one dir, main page]

login
A155944
Jacobsthal numbers A001045, every second term incremented by 1.
1
0, 2, 1, 4, 5, 12, 21, 44, 85, 172, 341, 684, 1365, 2732, 5461, 10924, 21845, 43692, 87381, 174764, 349525, 699052, 1398101, 2796204, 5592405, 11184812, 22369621, 44739244, 89478485, 178956972, 357913941, 715827884, 1431655765, 2863311532, 5726623061, 11453246124, 22906492245
OFFSET
0,2
COMMENTS
Constructed from A001045 with periodic overlay, similar to A154890.
It appears that, except for term a(1)=2, these are the indices for which the Hankel transform of the coefficients of (1 - x)^(1/3) on F2[x] are non vanishing. See example 2.3 p. 8 of Han paper. - Michel Marcus, May 17 2020
LINKS
Guo-Niu Han, Hankel continued fraction and its applications, Advances in Mathematics, Elsevier, 2016, 303, pp.295-321. 10.1016/j.aim.2016.08.013. hal-02125293.
FORMULA
a(n) = A001045(n) + A000035(n).
a(n+1) = 2^n + 1 - a(n).
From R. J. Mathar, Feb 10 2009: (Start)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = 1/2 + 2^n/3 - 5*(-1)^n/6.
G.f.: x(2-3x)/((1+x)(1-x)(1-2x)). (End)
a(n) = floor((2^n + 1)/3) + n mod 2. - Karl V. Keller, Jr., Aug 15 2021
MATHEMATICA
LinearRecurrence[{2, 1, -2}, {0, 2, 1}, 40] (* Harvey P. Dale, Mar 14 2014 *)
PROG
(Python) print([(2**n + 1)//3 + n%2 for n in range(40)]) # Karl V. Keller, Jr., Aug 15 2021
CROSSREFS
Sequence in context: A138205 A137224 A191830 * A350087 A091232 A336398
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 31 2009
EXTENSIONS
Definition rephrased, more terms from R. J. Mathar, Feb 10 2009
STATUS
approved