[go: up one dir, main page]

login
A155178
Numbers p of primitive Pythagorean triangles such that perimeters and products of 3 sides are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes, pr=a*b*c, pr-+1 are primes.
4
1, 7916, 35882, 37816, 47491, 128429, 131830, 146471, 154799, 157579, 170219, 174964, 187544, 207829, 208039, 222887, 223142, 262502, 291544, 319825, 327602, 331627, 353857, 476681, 477659, 494207, 522025, 537454, 540682, 558161, 571670
OFFSET
1,2
COMMENTS
p=1,q=2,a=3,b=4,c=5,s=12-+1 primes,pr=3*4*5=60-+1 primes, ...
MATHEMATICA
lst={}; Do[p=n; q=p+1; a=q^2-p^2; c=q^2+p^2; b=2*p*q; ar=a*b/2; s=a+b+c; pr=a*b*c; If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[pr-1]&&PrimeQ[pr+1], AppendTo[lst, n]], {n, 3*9!}]; lst
KEYWORD
nonn
AUTHOR
STATUS
approved