[go: up one dir, main page]

login
Numbers from Bhargava's prime-universality criterion theorem
4

%I #1 Feb 27 2009 03:00:00

%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,67,73

%N Numbers from Bhargava's prime-universality criterion theorem

%C Bhargava's prime-universality criterion theorem asserts that an integer-matrix quadratic form represents all prime numbers if and only if it represents all numbers in this sequence.

%D H. Cohen, Number Theory, Springer, 2007, page 313.

%D M.-H. Kim, Recent developments on universal forms, Contemporary Math., 344 (2004), 215-228.

%Y A030050 (numbers from the 15 theorem), A030051 (numbers from the 290 theorem), A116582 (numbers from the 33 theorem)

%K fini,full,nonn

%O 1,1

%A Scott Duke Kominers (kominers(AT)fas.harvard.edu), Jan 07 2009