OFFSET
1,2
COMMENTS
Let x(1)=1, let x(2) be x>0 satisfying 1/x(1) + 1/x = x,..., for n>=1, let x(n+1) be x>0 satisfying SUM(1/x(k): k=1,2,...,n) + 1/x = x.
Then SUM(1/x(k): k=1,2,...) diverges, but if the k-th term is replaced by w(k)/x(k) where w(k)=2^(1-k), the resulting sum converges to S=1.518737... .
x(1)=1, x(2)=1.618... (the golden ratio), x(3)=2.095293... .
LINKS
Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
EXAMPLE
1.51873724747790391474429875017680513439652335339033...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling and Peter J. C. Moses, Jan 06 2009
STATUS
approved