OFFSET
1,1
COMMENTS
Sequence gives values of x such that x^3 + 39x^2 = y^2 since a(n)^3 + 39*a(n)^2 = (8n^3 + 84n^2 + 216n + 70)^2.
a(n) = 2*(seventh diagonal to A153238).
About the first comment, naturally, the complete list of nonnegative values of x in x^3 + 39*x^2 = y^2 is given by x = m^2-39 with m>6. - Bruno Berselli, Jan 25 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Colin Barker, Jan 24 2012: (Start)
a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)
E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
Sum_{n>=1} 1/a(n) = 62/1995 + tan(sqrt(39)*Pi/2)*Pi/(4*sqrt(39)). - Amiram Eldar, Mar 02 2023
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {42, 82, 130}, 25] (* G. C. Greubel, Aug 23 2016 *)
Table[4n^2+28n+10, {n, 70}] (* Harvey P. Dale, Jan 15 2023 *)
PROG
(PARI) a(n)=4*n*(n+7)+10 \\ Charles R Greathouse IV, Jan 24 2012
(Magma) [4*n^2 + 28*n + 10: n in [1..50]]; // Vincenzo Librandi, Jan 25 2012
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Dec 30 2008
STATUS
approved