[go: up one dir, main page]

login
A152064
a(n) = 2*n^3 - 3*n^2 + 5.
5
5, 4, 9, 32, 85, 180, 329, 544, 837, 1220, 1705, 2304, 3029, 3892, 4905, 6080, 7429, 8964, 10697, 12640, 14805, 17204, 19849, 22752, 25925, 29380, 33129, 37184, 41557, 46260, 51305, 56704, 62469, 68612, 75145, 82080, 89429, 97204, 105417, 114080, 123205
OFFSET
0,1
REFERENCES
P. Curtz, Integration numerique des systemes differentiels a conditions initiales, 135 pages, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12.
G.f.: ( 5 - 16*x + 23*x^2 ) / (x-1)^4. - R. J. Mathar, Jul 06 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=5, a(1)=4, a(2)=9, a(3)=32. - Harvey P. Dale, Oct 12 2012
MATHEMATICA
Table[2n^3-3n^2+5, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {5, 4, 9, 32}, 50] (* Harvey P. Dale, Oct 12 2012 *)
PROG
(Magma) [2*n^3-3*n^2+5: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
(PARI) a(n)=2*n^3-3*n^2+5 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A046588 A086654 A286461 * A088482 A163888 A363323
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 23 2008
EXTENSIONS
Simpler definition and more terms from Paolo P. Lava, Nov 27 2008
Edited by N. J. A. Sloane, Jan 04 2008
STATUS
approved