[go: up one dir, main page]

login
A151282
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, 1), (1, 1)}.
2
1, 2, 6, 18, 58, 190, 638, 2170, 7474, 25974, 90982, 320738, 1137002, 4049838, 14485326, 52001290, 187292514, 676546790, 2450311862, 8895769714, 32366225562, 117995832990, 430960312862, 1576675041434, 5777325893266, 21200338220630, 77901645076998, 286615385651970, 1055762834791114, 3893279267979662
OFFSET
0,2
COMMENTS
From Paul Barry, Jan 19 2009: (Start)
Hankel transform is 2^C(n+1,2).
Row sums of Riordan array ((1-2x)/(1-x+2x^2),x(1-x)/(1-x+2x^2))^{-1}.
G.f.: 1/(1-2x-2x^2/(1-x-2x^2/(1-x-2x^2/(1-x-2x^2/(1-...))))) (continued fraction).
First column of Riordan array ((1-x)/(1+x+2x^2),x/(1+x+2x^2))^{-1}. (End)
LINKS
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
FORMULA
Conjecture: (n+1)*a(n)-3*(2n+1)*a(n-1) +(n+10)*a(n-2) +28(n-2)*a(n-3)=0. - R. J. Mathar, Dec 08 2011
a(n) ~ sqrt(1348+953*sqrt(2)) * (1+2*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 14 2013
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 58*x^4 + 190*x^5 + 638*x^6 + 2170*x^7 + ...
MAPLE
b:= proc(n, l) option remember; `if`(-1 in {l[]}, 0, `if`(n=0, 1,
add(b(n-1, l+d), d=[[-1, -1], [-1, 0], [0, 1], [1, 1]])))
end:
a:= n-> b(n, [0$2]):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 18 2013
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A304200 A081057 A000137 * A193777 A157004 A293067
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved