[go: up one dir, main page]

login
A151262
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (0, -1), (0, 1), (1, -1)}
0
1, 1, 3, 6, 18, 47, 141, 416, 1278, 3983, 12616, 40475, 131461, 430548, 1423924, 4741118, 15896509, 53622384, 181826538, 619678461, 2121171010, 7290531452, 25152947775, 87076167883, 302422286268, 1053449686642, 3679700846025, 12886585101117, 45238465102771, 159171202374935, 561236984775150, 1982888741975501
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A223044 A317078 A289587 * A148555 A148556 A148557
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved