[go: up one dir, main page]

login
A151258
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (0, 1), (1, -1)}
0
1, 1, 2, 4, 12, 28, 86, 228, 736, 2070, 6868, 20212, 68300, 207620, 711694, 2217096, 7683384, 24405062, 85318256, 275290932, 969323508, 3168559356, 11223800316, 37092325140, 132060026316, 440527174396, 1575294513724, 5297495810812, 19015832114996, 64400390557052, 231947048982446, 790430109713200
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A096581 A275434 A364316 * A148175 A148176 A148177
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved