[go: up one dir, main page]

login
A148153
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (0, 0, 1), (0, 1, -1), (1, -1, 1)}.
0
1, 1, 2, 4, 11, 30, 94, 299, 991, 3390, 11925, 42865, 156975, 583406, 2199907, 8397070, 32397041, 126177221, 495665601, 1962310738, 7823383494, 31389093385, 126675590877, 513964543645, 2095629993499, 8583643133905, 35306927076883, 145797956023790, 604269114905701, 2512993929528821
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A073193 A148151 A148152 * A148154 A148155 A007719
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved