[go: up one dir, main page]

login
A147793
Smallest prime q such that p^q-2 is prime where p ranges over the set of primes numbers.
0
2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 149, 2, 5, 2, 7, 2, 2, 5, 2, 2, 3, 2, 5, 3, 89, 2, 2, 2, 13, 2, 3, 367, 2, 17, 3, 2, 2, 3, 2, 2, 2, 2, 439, 2, 61, 127, 2, 2, 3, 2, 37, 2, 3, 2, 2, 2, 2, 2, 2, 2
OFFSET
2,1
EXAMPLE
2^2-2 = 2 prime so a(1)=2, 3^2-2= 7 prime a(2)=2. For q=2,3,5, 199^q-2 is not
prime. For q=7, 199^7-2 = 12358664279161397 prime so a(27)=7.
PROG
(PARI) g2(n) = forprime(x=2, n, y=g(1000, x); if(y>0, print1(y", ")))
g(n, m) = p1=0; forprime(p=2, n, y=m^p-2; if(ispseudoprime(y), p1=p; break)); p1
CROSSREFS
Sequence in context: A001991 A305706 A359309 * A352201 A052298 A366441
KEYWORD
nonn
AUTHOR
Cino Hilliard, Nov 13 2008
STATUS
approved